
acmInternational Collegiate
Programming Contest

event
sponsor2011

ACM International Collegiate Programming Contest

2011

Latin American Regional Contests

November 4th-5th, 2011

Contest Session

This problem set contains 11 problems; pages are numbered from 1 to 20.

This problem set is used in simultaneous contests hosted in the following countries:

• Argentina

• Bolivia

• Brazil

• Chile

• Colombia

• Cuba

• Peru

• Mexico

• Venezuela

v1.1

General Information

Unless otherwise stated, the following conditions hold for all problems.

Input

1. The input must be read from standard input.

2. The input contains several test cases. Each test case is described using a number of lines that
depends on the problem.

3. When a line of data contains several values, they are separated by single spaces. No other spaces
appear in the input. There are no empty lines.

4. Every line, including the last one, has the usual end-of-line mark.

5. The end of input is indicated with a line containing certain values that depend on the problem.
This line should not be processed as a test case.

Output

1. The output must be written to standard output.

2. The result of each test case must appear in the output using a number of lines that depends on
the problem.

3. When a line of results contains several values, they must be separated by single spaces. No other
spaces should appear in the output. There should be no empty lines.

4. Every line, including the last one, must have the usual end-of-line mark.

5. No special mark should be written to indicate the end of output.

ICPC Latin American Regional – 2011 1

Problem A

Army buddies
Problem code name: army

Nlogonia is fighting a ruthless war against the neighboring country of Cubiconia. The Chief General
of Nlogonia’s Army decided to attack the enemy with a linear formation of soldiers, that would advance
together until conquering the neighboring country. Before the battle, the Chief General ordered that
each soldier in the attack line, besides protecting himself and attacking, should also protect his two
(nearest) neighbors in the line, one to his left and one to his right. The Chief General told the soldiers
that for each of them, his “buddies” would be these two neighbors, if such neighbors existed (because
the leftmost soldier does not have a left neighbor and the rightmost soldier does not have a right
neighbor). The Chief General also told the soldiers that protecting their buddies was very important
to prevent the attack line from being broken. So important that, if the left or right buddy of a soldier
is killed, then the next living neighbor to the left or to the right of the soldier, respectively, should
become his buddy.

The battle is fierce, and many soldiers in the attack line are being killed by fire shots, grenades
and bombs. But following the Chief General’s orders, immediately after knowing about losses in the
attack line, the Army’s information systems division has to inform the soldiers who their new buddies
are.

You are given the number of soldiers in the attack line, and a sequence of loss reports. Each loss
report describes a group of contiguous soldiers in the attack line that were just killed in the battle.
Write a program that, for each loss report, prints the new buddies formed.

Input

Each test case is described using several lines. The first input line contains two integers S and B
representing respectively the number of soldiers in the attack line, and the number of loss reports
(1 ≤ B ≤ S ≤ 105). Soldiers are identified by different integers from 1 to S, according to their
positions in the attack line, being 1 the leftmost soldier and S the rightmost soldier. Each of the next
B input lines describes a loss report using two integers L (left) and R (right), meaning that soldiers
from L to R were killed (1 ≤ L ≤ R ≤ S). You may assume that until that moment those soldiers
were alive and were just killed.

The last test case is followed by a line containing two zeros.

Output

For each test case output B+1 lines. In the i-th output line write the new buddies formed by removing
from the attack line the soldiers that were just killed according to the i-th loss report. That is, for
the loss report ‘L R’, print the first surviving soldier to the left of L, and the first surviving soldier to
the right of R. For each direction, print the character ‘*’ (asterisk) if there is no surviving soldier in
that direction. Print a line containing a single character ‘-’ (hyphen) after each test case.

ICPC Latin American Regional – 2011 2

Sample input

1 1

1 1

10 4

2 5

6 9

1 1

10 10

5 1

1 1

0 0

Output for the sample input

* *

-

1 6

1 10

* 10

* *

-

* 2

-

ICPC Latin American Regional – 2011 3

Problem B

Ball Stacking
Problem code name: ball

The XYZ TV channel is developing a new game show, where a contestant has to make some choices
in order to get a prize. The game consists of a triangular stack of balls, each of them having an integer
value, as the following example shows.

3
-5 3

-8 2 -8
3 9 -2 7

The contestant must choose which balls he is going to take and his prize is the sum of the values
of those balls. However, the contestant can take any given ball only if he also takes the balls directly
on top of it. This may require taking additional balls using the same rule. Notice that the contestant
may choose not to take any ball, in which case the prize is zero.

The TV show director is concerned about the maximum prize a contestant can make for a given
stack. Since he is your boss and he does not know how to answer this question, he assigned this task
to you.

Input

Each test case is described using several lines. The first line contains an integer N representing the
number of rows of the stack (1 ≤ N ≤ 1000). The i-th of the next N lines contains i integers Bij

(−105 ≤ Bij ≤ 105 for 1 ≤ j ≤ i ≤ N); the number Bij is the value of the j-th ball in the i-th row of
the stack (the first row is the topmost one, and within each row the first ball if the leftmost one).

The last test case is followed by a line containing one zero.

Output

For each test case output a line with an integer representing the maximum prize a contestant can
make from the stack.

ICPC Latin American Regional – 2011 4

Sample input

4

3

-5 3

-8 2 -8

3 9 -2 7

2

-2

1 -10

3

1

-5 3

6 -4 1

0

Output for the sample input

7

0

6

ICPC Latin American Regional – 2011 5

Problem C

Candy’s Candy
Problem code name: candy

Candy has a stock of candy of F different flavors. She is going to make several packs of candy to
sell them. Each pack must be either a flavored pack, containing candy of a single flavor, or a variety
pack, containing candy of every flavor. Candy wants to make a nice packing with her candy. She
decided that a nice packing must honor the following conditions:

• Each piece of candy must be placed in exactly one pack.

• Each pack, regardless of its type, must contain at least 2 pieces of candy.

• Each pack, regardless of its type, must contain the same number of pieces of candy.

• Within each variety pack, the number of pieces of candy of each flavor must be the same.

• There must be at least one variety pack.

• There must be at least one flavored pack of each flavor.

Candy is wondering how many different nice packings of candy she could make. Two nice packings
of candy are considered different if and only if they differ in the number of flavored packs, or in the
number of variety packs, or in the number of pieces of candy per pack. Since Candy will sell her candy
during the closing ceremony of this contest, you are urged to answer her question as soon as you can.

Input

Each test case is described using two lines. The first line contains an integer F indicating the number
of flavors (2 ≤ F ≤ 105). The second line contains F integers Ci, indicating the number of pieces of
candy of each flavor (1 ≤ Ci ≤ 109 for 1 ≤ i ≤ F).

The last test case is followed by a line containing one zero.

Output

For each test case output a line with an integer representing the number of different nice packings of
candy, according to the rules given above.

Sample input

3

15 33 21

2

1 1

2

2 2

2

3 3

3

1000000000 1000000000 1000000000

0

Output for the sample input

4

0

0

1

832519396

ICPC Latin American Regional – 2011 6

Problem D

Diccionário Portuñol
Problem code name: diccionario

Portuñol is a special language that was naturally developed in Latin America. Since almost half of
Latin America speaks Portuguese (Português) and almost half speaks Spanish (Español), the mixing
of both languages is natural.

Each word in Portuñol is made by taking a non-empty prefix of a Portuguese word and a non-
empty suffix of a Spanish word, and concatenating them together. A prefix of a word is any word that
can be obtained by erasing zero or more characters from its right end. A suffix of a word is any word
that can be obtained by erasing zero or more characters from its left end. The name of the language
itself comes from taking a prefix of the word “Português” (Portu) and a suffix of the word “Español”
(ñol), and concatenating them.

Of course, not every possible way of combining two words will result in something meaningful, or
even pronounceable, but that is not important. We want you to write a program to count the number
of different Portuñol words.

You will be given two non-empty sets of words to test your program. The first set will represent
Portuguese words and the second set will represent Spanish words. You need to calculate the number
of different Portuñol words that can be made using the prefix and suffix rule described above. Note
that the same word may be constructed in several ways, but it still needs to be counted as one. Also
note that the input sets are just to test your program, so they do not need to be made out of actual
Portuguese or Spanish words.

Input

Each test case is described using several lines. The first line contains two integers P and S representing
respectively the number of Portuguese words and the number of Spanish words (1 ≤ P, S ≤ 1000).
Each of the next P lines contains a Portuguese word, and after that each of the next S lines contains
a Spanish word. Each word is a non-empty string of at most 1000 characters; each character is one
of the 26 standard lowercase letters (from ‘a’ to ‘z’). You may assume that within each test case no
two Portuguese words are the same, and that the sum of the lengths of all the Portuguese words is at
most 105. The same holds for the Spanish words.

The last test case is followed by a line containing two zeros.

Output

For each test case output a line with an integer representing the number of different words that can
be constructed by concatenating a non-empty prefix of a word in the first set (Portuguese words) and
a non-empty suffix of a word in the second set (Spanish words).

ICPC Latin American Regional – 2011 7

Sample input

3 3

mais

grande

mundo

mas

grande

mundo

1 5

a

aaaaa

aaaaaa

aaaaaaa

a

aaaaaaaaa

1 1

abc

abc

0 0

Output for the sample input

182

9

8

ICPC Latin American Regional – 2011 8

Problem E

Electrical Pollution
Problem code name: electrical

Sortonia is the capital of the North Nlogonia province. The city is laid out with almost all of
its streets in a square grid, aligned to either the North-South or the West-East direction. The only
exception is Merge Avenue, which runs Southwest-Northeast, splitting city blocks along their diagonals.

Sortonia is also one of the greenest cities in Nlogonia. The local university developed technology
to harness the magnetic field of Earth for energy generation. As a consequence, all intersections of
Merge Avenue have power generators installed, supplying all the homes and businesses of the city.

This technology was praised by environmentalists at the time for eliminating Sortonia’s carbon
footprint, but soon after its introduction, thousands of bees and birds were found dead in the city.
Puzzled, the Queen of Nlogonia ordered the queendom’s biophysicists to investigate the phenomenon.

After many months of study, they discovered that the generators used by Sortonians created
anomalies in the local magnetic field. The birds and bees that use the Earth’s magnetic field to
guide their flight were confused by these anomalies, started flying in circles and eventually died of
exhaustion.

According to the biophysicists’ theoretical models, each generator creates an anomaly that is
represented as an integer value. Each anomaly propagates indefinitely in all four compass directions.
Points that are not directly north, south, west or east of the generator are unaffected by it. On the
other hand, if a point is aligned with two generators then the anomaly at that point is the sum of
the two anomalies produced by those generators. As an example, consider the picture below that
represents a certain portion of Sortonia. The anomaly at point R is just the one produced by the
generator at that point, while the anomaly at point T is the sum of the anomalies produced by the
generator at point R and the generator at point S.

T

S
R

Merge Avenue
Street
Generator

The biophysicists would like to measure the anomalies for some city intersections, but these mea-
surements require expensive equipment and technical expertise. So they plan to measure only a subset
of the city’s intersections and extrapolate other data from them. Predicting an anomaly from a set of
measurements might require combining several of them in complicated ways. Thus, the Queen ordered
you to write a program that predicts the anomalies at certain intersections, given the measurements
previously made.

Input

Each test case is described using several lines. The first line contains two integers M and Q representing
respectively the number of measurements and the number of queries (1 ≤ M,Q ≤ 104). Each of the
next M lines describes a measurement using three integers X, Y and A, indicating that the measured
anomaly at point (X,Y) is A (−107 ≤ X,Y ≤ 107 and −104 ≤ A ≤ 104). After that, each of the

ICPC Latin American Regional – 2011 9

next Q lines describes a query using two integers X ′ and Y ′, indicating that the anomaly at point
(X ′, Y ′) must be predicted (−107 ≤ X ′, Y ′ ≤ 107). All positions are measured in city blocks; the first
coordinate increases from West to East, while the second coordinate increases from South to North.
Point (0, 0) is located on Merge Avenue. You may assume that within each test case each point is not
measured more than once. Likewise, each point is not queried more than once. You may also assume
that all the measurements are consistent.

The last test case is followed by a line containing two zeros.

Output

For each test case output Q + 1 lines. In the i-th line write the answer to the i-th query. If the
information given by the measurements is enough to predict the anomaly at the queried point, then
write an integer representing the predicted anomaly at the queried point. Otherwise write the character
‘*’ (asterisk). Print a line containing a single character ‘-’ (hyphen) after each test case.

Sample input

3 3

30 -10 3

30 20 15

40 20 2

-10 40

40 -10

-10 -10

6 8

0 1 11

0 3 8

1 0 11

3 0 8

4 4 0

3 5 6

1 5

0 3

3 0

4 3

0 2

2 4

4 4

5 5

0 0

Output for the sample input

-10

-10

*

-

9

8

8

*

*

*

0

*

-

ICPC Latin American Regional – 2011 10

Problem F

File Retrieval
Problem code name: file

The operating system of your computer indexes the files on your hard disk based on their contents,
and provides textual search over them. The content of each file is a non-empty string of lowercase
letters. To do a search, you specify a key, which is also a non-empty string of lowercase letters. The
result is a list of all the files that contain the key as a substring. A string s is a substring of a string t
if t contains all characters of s as a contiguous sequence. For instance, “foofoo”, “cafoo”, “foota” and
“foo” all contain “foo” as a substring, while “foa”, “fofo”, “fioo” and “oofo” do not.

You know the content of each file on your hard disk, and wonder whether each subset of the files
is searchable. A subset of the files is searchable if there exists at least one key that produces exactly
the list of those files as a result. Given the contents of the files on your hard disk, you are asked to
compute the number of non-empty searchable subsets.

Input

Each test case is described using several lines. The first line contains an integer F representing the
number of files on your hard disk (1 ≤ F ≤ 60). Each of the next F lines indicates the content of one
of the files. The content of a file is a non-empty string of at most 104 characters; each character is one
of the 26 standard lowercase letters (from ‘a’ to ‘z’).

The last test case is followed by a line containing one zero.

Output

For each test case output a line with an integer representing the number of non-empty searchable
subsets.

Sample input

6

form

formal

malformed

for

man

remake

3

cool

cool

old

0

Output for the sample input

11

3

ICPC Latin American Regional – 2011 11

Problem G

Garden Fence
Problem code name: garden

Gary is a careful gardener that has a rectangular field full of trees. There are two kinds of trees in
his land: pines and larches. To improve their vitality, he decided to start using a specific fertilizer for
each kind of tree, instead of the generic fertilizer he was using so far.

Since Gary has many trees, fertilizers cannot be placed individually on each tree. For this reason
he decided to build a fence to separate the field in two, and use the pine fertilizer on one side and
the larch fertilizer on the other side. The new fence will be built over a straight line connecting two
distinct points located on the boundary of the land.

Sadly, each fertilizer is great for the kind of tree it is intended, but deadly for the other. After
building the fence and deciding which fertilizer will be used on each side, larches in pines’ side and pines
in larches’ side will be cut down, to prevent a slow death that will ruin the landscape. Furthermore,
before building the fence it is necessary to cut down trees of any kind lying directly over the line where
the fence will be located.

Of course, Gary loves his trees. Depending on their kind, age and other factors, each tree has a
certain value. The gardener wants to build the fence and select where to use each fertilizer in such
a way that his loss is minimized, where the loss is the sum of the values of the trees that will be cut
down.

You were hired to build the fence. Before starting your work, tell Gary how much he will lose
when choosing optimally the location of the fence and the fertilizer for each side.

Input

Each test case is described using several lines. The first line contains two integers P and L, representing
respectively the number of pines and the number of larches (1 ≤ P,L ≤ 1000). Each of the next P
lines describes a pine. After that, each of the next L lines describes a larch. Trees are modeled as
points in the XY plane. Each tree is described using three integers X, Y and V , where X and Y are
the coordinates of the tree (−105 ≤ X,Y ≤ 105), and V is its value (1 ≤ V ≤ 1000). You may assume
that within each test case no two trees have the same location.

The last test case is followed by a line containing two zeros.

Output

For each test case output a line with an integer representing the minimum possible loss for the gardener.

ICPC Latin American Regional – 2011 12

Sample input

2 3

2 2 10

4 4 10

2 4 10

4 2 10

3 3 10

2 3

2 2 20

4 4 20

2 4 10

4 2 10

3 3 10

1 1

-10000 -10000 1000

10000 10000 1000

2 2

0 0 4

0 2 2

0 1 3

0 4 1

4 1

0 1 1000

0 -1 1000

1 0 1000

-1 0 1000

0 0 1

0 0

Output for the sample input

10

20

0

2

1

ICPC Latin American Regional – 2011 13

Problem H

Hedge Mazes
Problem code name: hedge

The Queen of Nlogonia is a fan of mazes, and therefore the queendom’s architects built several
mazes around the Queen’s palace. Every maze built for the Queen is made of rooms connected by
corridors. Each corridor connects a different pair of distinct rooms and can be transversed in both
directions.

The Queen loves to stroll through a maze’s rooms and corridors in the late afternoon. Her servants
choose a different challenge for every day, that consists of finding a simple path from a start room to an
end room in a maze. A simple path is a sequence of distinct rooms such that each pair of consecutive
rooms in the sequence is connected by a corridor. In this case the first room of the sequence must be
the start room, and the last room of the sequence must be the end room. The Queen thinks that a
challenge is good when, among the routes from the start room to the end room, exactly one of them
is a simple path. Can you help the Queen’s servants to choose a challenge that pleases the Queen?

For doing so, write a program that given the description of a maze and a list of queries defining
the start and end rooms, determines for each query whether that choice of rooms is a good challenge
or not.

Input

Each test case is described using several lines. The first line contains three integers R, C and Q
representing respectively the number of rooms in a maze (2 ≤ R ≤ 104), the number of corridors
(1 ≤ C ≤ 105), and the number of queries (1 ≤ Q ≤ 1000). Rooms are identified by different integers
from 1 to R. Each of the next C lines describes a corridor using two distinct integers A and B,
indicating that there is a corridor connecting rooms A and B (1 ≤ A < B ≤ R). After that, each of
the next Q lines describes a query using two distinct integers S and T indicating respectively the start
and end rooms of a challenge (1 ≤ S < T ≤ R). You may assume that within each test case there is
at most one corridor connecting each pair of rooms, and no two queries are the same.

The last test case is followed by a line containing three zeros.

Output

For each test case output Q+ 1 lines. In the i-th line write the answer to the i-th query. If the rooms
make a good challenge, then write the character ‘Y’ (uppercase). Otherwise write the character ‘N’
(uppercase). Print a line containing a single character ‘-’ (hyphen) after each test case.

ICPC Latin American Regional – 2011 14

Sample input

6 5 3

1 2

2 3

2 4

2 5

4 5

1 3

1 5

2 6

4 2 3

1 2

2 3

1 4

1 3

1 2

0 0 0

Output for the sample input

Y

N

N

-

N

Y

Y

-

ICPC Latin American Regional – 2011 15

Problem I

In Braille
Problem code name: inbraille

The Braille system, designed by Louis Braille in 1825, revolutionized written communication for
blind and visually impaired persons. Braille, a blind Frenchman, developed a tactile language where
each element is represented by a cell with six dot positions, arranged in three rows and two columns.
Each dot position can be raised or not, allowing for 64 different configurations which can be felt by
trained fingers. The figure below shows the Braille representation for the decimal digits (a black dot
indicates a raised position).

1 2 3 4 5

6 7 8 9 0

In order to develop a new software system to help teachers to deal with blind or visual impaired
students, a Braille dictionary module is necessary. Given a message, composed only by digits, your
job is to translate it to or from Braille. Can you help?

Input

Each test case is described using three or five lines. The first line contains an integer D representing
the number of digits in the message (1 ≤ D ≤ 100). The second line contains a single uppercase letter
‘S’ or ‘B’. If the letter is ‘S’, the next line contains a message composed of D decimal digits that your
program must translate to Braille. If the letter is ‘B’, the next three lines contain a message composed
of D Braille cells that your program must translate from Braille. Braille cells are separated by single
spaces. In each Braille cell a raised position is denoted by the character ‘*’ (asterisk), while a not
raised position is denoted by the character ‘.’ (dot).

The last test case is followed by a line containing one zero.

Output

For each test case print just the digits of the corresponding translation, in the same format as the
input (see the examples for further clarification).

ICPC Latin American Regional – 2011 16

Sample input

10

S

1234567890

3

B

*. *. **

.. *. ..

..

2

S

00

0

Output for the sample input

*. *. ** ** *. ** ** *. .* .*

.. *. .. .* .* *. ** ** *. **

..

123

.* .*

** **

.. ..

ICPC Latin American Regional – 2011 17

Problem J

Jupiter Attacks!
Problem code name: jupiter

Jupiter is invading! Major cities have been destroyed by Jovian spacecrafts and humanity is fighting
back. Nlogonia is spearheading the counter-offensive, by hacking into the spacecrafts’ control system.

Unlike Earthling computers, in which usually a byte has 28 possible values, Jovian computers use
bytes with B possible values, {0, 1, . . . , B − 1}. Nlogonian software engineers have reverse-engineered
the firmware for the Jovian spacecrafts, and plan to sabotage it so that the ships eventually self-
destruct.

As a security measure, however, the Jovian spacecrafts run a supervisory program that periodically
checks the integrity of the firmware, by hashing portions of it and comparing the result against known
good values. To hash the portion of the firmware from the byte at position i to the byte at position
j, the supervisor uses the hash function

H(fi, . . . fj) =

j−i∑
k=0

Bkfj−k (mod P)

where P is a prime number. For instance, if B = 20 and P = 139, while bytes 2 to 5 of the firmware
have the values f2 = 14, f3 = 2, f4 = 2, and f5 = 4, then

H(f2, . . . f5) = B0f5 + B1f4 + B2f3 + B3f2 (mod P)

= 200 × 4 + 201 × 2 + 202 × 2 + 203 × 14 (mod 139)

= 4 + 40 + 800 + 112000 (mod 139)

= 112844 (mod 139)

= 115

The Nlogonian cryptologists need to find a way to sabotage the firmware without tripping the
supervisor. As a first step, you have been assigned to write a program to simulate the interleaving
of two types of commands: editing bytes of the firmware by the Nlogonian software engineers, and
computing hashes of portions of the firmware by the Jovian supervisory program. At the beginning
of the simulation the value of every byte in the firmware is zero.

Input

Each test case is described using several lines. The first line contains four integers B, P , L and
N , where B is the number of possible values of a Jovian byte, P is the modulus of the Jovian hash
(2 ≤ B < P ≤ 109 and P prime), L is the length (number of Jovian bytes) of the spacecrafts’ firmware,
and N is the number of commands to simulate (1 ≤ L,N ≤ 105). At the beginning of the simulation
the value of every byte in the firmware is fi = 0 for 1 ≤ i ≤ L. Each of the next N lines describes a
command to simulate. Each command description starts with an uppercase letter that is either ‘E’ or
‘H’, with the following meanings.

‘E’ → The line describes an edit command. The letter is followed by two integers I and V indicating
that the byte at position I of the firmware (that is, fI) must receive the value V (1 ≤ I ≤ L and
0 ≤ V ≤ B − 1).

‘H’ → The line describes a hash command. The letter is followed by two integers I and J indicating
that H(fI , . . . fJ) must be computed (1 ≤ I ≤ J ≤ L).

The last test case is followed by a line containing four zeros.

ICPC Latin American Regional – 2011 18

Output

For each test case output the results of the hash commands in the input. In the i-th line write an
integer representing the result of the i-th hash command. Print a line containing a single character
‘-’ (hyphen) after each test case.

Sample input

20 139 5 7

E 1 12

E 2 14

E 3 2

E 4 2

E 5 4

H 2 5

E 2 14

10 1000003 6 11

E 1 3

E 2 4

E 3 5

E 4 6

E 5 7

E 6 8

H 1 6

E 3 0

E 3 9

H 1 3

H 4 6

999999935 999999937 100000 7

E 100000 6

E 1 7

H 1 100000

E 50000 8

H 1 100000

H 25000 75000

H 23987 23987

0 0 0 0

Output for the sample input

115

-

345678

349

678

-

824973478

236724326

450867806

0

-

ICPC Latin American Regional – 2011 19

Problem K

King’s Poker
Problem code name: king

Poker is one of the most widely played card games, and King’s Poker is one of its variations. The
game is played with a normal deck of 52 cards. Each card has one of 4 suits and one of 13 ranks.
However, in King’s Poker card suits are not relevant, while ranks are Ace (rank 1), 2, 3, 4, 5, 6, 7, 8, 9,
10, Jack (rank 11), Queen (rank 12) and King (rank 13). The name of the game comes from the fact
that in King’s Poker, the King is the highest ranked card. But this is not the only difference between
regular Poker and King’s Poker. Players of King’s Poker are dealt a hand of just three cards. There
are three types of hands:

• A set, made of three cards of the same rank.

• A pair, which contains two cards of the same rank, with the other card unmatched.

• A no-pair, where no two cards have the same rank.

Hands are ranked using the following rules:

• Any set defeats any pair and any no-pair.

• Any pair defeats any no-pair.

• A set formed with higher ranked cards defeats any set formed with lower ranked cards.

• If the matched cards of two pairs have different ranks, then the pair with the higher ranked
matched cards defeats the pair with the lower ranked matched cards.

• If the matched cards of two pairs have the same rank, then the unmatched card of both hands
are compared; the pair with the higher ranked unmatched card defeats the pair with the lower
ranked unmatched card, unless both unmatched cards have the same rank, in which case there
is a tie.

A new software house wants to offer King’s Poker games in its on-line playing site, and needs a
piece of software that, given a hand of King’s Poker, determines the set or pair with the lowest rank
that beats the given hand. Can you code it?

Input

Each test case is described using a single line. The line contains three integers A, B, and C representing
the ranks of the cards dealt in a hand (1 ≤ A,B,C ≤ 13).

The last test case is followed by a line containing three zeros.

Output

For each test case output a single line. If there exists a set or a pair that beats the given hand, write
the lowest ranked such a hand. The beating hand must be written by specifying the ranks of their
cards, in non-decreasing order. If no set or pair beats the given hand, write the character ‘*’ (asterisk).

ICPC Latin American Regional – 2011 20

Sample input

1 1 1

1 1 12

1 1 13

1 13 1

10 13 10

1 2 2

13 13 13

13 12 13

12 12 12

3 1 4

1 5 9

0 0 0

Output for the sample input

2 2 2

1 1 13

1 2 2

1 2 2

1 11 11

2 2 3

*

1 1 1

13 13 13

1 1 2

1 1 2

