C - Counting Self-Rotating Subsets

Languages: C, C++, Java, Pascal, Python, Tiger, JavaScript, Haskell, C#
Time & Memory limits: (details)

A set  of points in  the plane is self-rotating if there is a point $P$,  the center,  and an angle $\alpha$, expressed in degrees, where  $0 < \alpha <  360$, such that the  rotation of the plane, with center $P$ and angle $\alpha$, maps every point in the set to some point also in the set.

You are given a set of $N$ distinct points, all having integer coordinates.  Find the  number of distinct subsets of size  $1, 2,  \ldots, N$  that are  self-rotating. Two  subsets are considered distinct  if one contains a  point that the other  does not contain.

Input

The first line of the input contains one integer $N$ representing the number of points in the input set ($1 \le N \le 1000$). Each of the following $N$ lines describes a different point of the set, and contains two integers $X$ and $Y$ giving its coordinates in a Cartesian coordinate system ($-10^9 \le X, Y \le 10^9$). All points in the input set are distinct.

Output

Output  a single  line containing $N$ integers  $S_1, S_2,  \ldots, S_N$. For $i=1,2,\ldots,N$ the integer $S_i$ must be the number  of subsets of $i$  points of  the input  set  that are  self-rotating.  Since  these numbers can be very big, output them modulo $10^9 + 7$.

Sample test(s)

Input
3 1 1 2 2 1 0
Output
3 3 0
Input
7 -2 0 -1 1 0 2 0 0 2 0 1 -1 0 -2
Output
7 21 5 5 3 1 1
Input
1 -1000000000 1000000000
Output
1