Determine if an $N$-sided closed polygon (not necessarily convex) with positive area (i.e., non degenerate) and sides of length $L_1$, $L_2$,...,$L_N$ can be drawn in a two-dimensional plane.

The first line of the input contains the integer $N$ ($1 \leq N \leq 10$). The second line contains $N$ space-separated integers $1 \leq L_i \leq 100$.

If an $N$-sided polygon satisfying the condition can be drawn, print Yes; otherwise, print No.

Input

4
3 8 5 1

Output

Yes

Input

4
3 8 4 1

Output

No

Input

10
1 8 10 5 8 12 34 100 11 3

Output

No